MINI MINI MANI MO
%
% Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
%
\name{ore.predict-kmeans}
\alias{ore.predict-kmeans}
\alias{ore.predict,kmeans-method}
\title{Oracle R Enterprise Predictions Using \code{\link[stats]{kmeans}} Models}
\description{
Oracle R Enterprise method for generating predictions using
\code{\link[stats]{kmeans}} Models.
}
\usage{
\S4method{ore.predict}{kmeans}(object, newdata, type = c("classes", "distances"),
na.action = na.pass, ...)
}
\arguments{
\item{object}{A \code{\link[stats]{kmeans}} model object.}
\item{newdata}{An \code{\link[OREbase:ore.frame-class]{ore.frame}}
object.}
\item{type}{A character string specifying the type of prediction to
make; either \code{"classes"} (cluster id) or \code{"distances"}
(Euclidean distance from cluster centers).}
\item{na.action}{The manner in which \code{NA} values are handled,
either \code{na.omit} or \code{na.pass}.}
\item{\dots}{Optional arguments.}
}
\value{
If argument \code{type} is \code{"classes"}, returns an
\code{\link[OREbase:ore.integer-class]{ore.integer}} object of
cluster classifications.
If argument \code{type} is \code{"distances"}, returns an
\code{\link[OREbase:ore.frame-class]{ore.frame}} object with one
column for each cluster.
}
\references{
\href{http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/documentation/index.html}{Oracle R Enterprise}
}
\author{
Oracle \email{oracle-r-enterprise@oracle.com}
}
\seealso{
\code{\link{ore.predict}},
\code{\link{ore.predict-matrix}},
\code{\link[stats]{kmeans}}.
}
\examples{
irisClusters <- kmeans(as.matrix(iris[1:4]), centers = 3)
IRIS <- ore.push(iris)
IRIS$CLUSTER <- ore.predict(irisClusters, IRIS)
IRIS <- cbind(IRIS, ore.predict(irisClusters, IRIS, type = "distances"))
head(IRIS)
table(IRIS$CLUSTER, IRIS$Species)
}
\keyword{multivariate}
\keyword{cluster}
OHA YOOOO