MINI MINI MANI MO
%
% Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
%
\name{ore.predict-glm}
\alias{ore.predict-glm}
\alias{ore.predict,glm-method}
\title{
Oracle R Enterprise - Previsioni mediante i modelli \code{\link[stats]{glm}}
}
\description{
Metodo di Oracle R Enterprise per la generazione delle previsioni
mediante i modelli \code{\link[stats]{glm}}.
}
\usage{
\S4method{ore.predict}{glm}(object, newdata, type = c("link", "response"),
se.fit = FALSE, dispersion = NULL, na.action = na.pass,
...)
}
\arguments{
\item{object}{
Oggetto di modello \code{\link[stats]{glm}}.
}
\item{newdata}{
Oggetto
\code{\link[OREbase:ore.frame-class]{ore.frame}}.
}
\item{type}{
Stringa di caratteri che specifica il tipo di previsione da
generare: \code{"link"} (scala della funzione di collegamento)
o \code{"response"} (scala della variabile risposta).
}
\item{se.fit}{
Valore logico che indica se restituire gli
errori standard per le previsioni.
}
\item{dispersion}{
Il parametro di dispersione da usare durante il calcolo
degli errori standard per le previsioni.
}
\item{na.action}{
Modalità di gestione dei valori \code{NA},
\code{na.omit} o \code{na.pass}.
}
\item{\dots}{
Argomenti facoltativi.
}
}
\value{
Quando l'argomento \code{se.fit} è \code{FALSE}, viene restituito
un oggetto \code{\link[OREbase:ore.numeric-class]{ore.numeric}} che contiene le previsioni
del tipo specificato.
Quando l'argomento \code{se.fit} è \code{TRUE}, viene restituito
un oggetto \code{\link[OREbase:ore.frame-class]{ore.frame}} con due colonne:
\code{"PRED"} e \code{"SE.PRED"}.
}
\references{
\href{http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/documentation/index.html}{Oracle R Enterprise}
}
\note{
Use of date/time terms in this method will result in an error.
}
\author{
Oracle \email{oracle-r-enterprise@oracle.com}
}
\seealso{
\code{\link{ore.predict}},
\code{\link{ore.predict-lm}},
\code{\link[stats]{predict.glm}}.
}
\examples{
\dontshow{
if (!interactive())
ore.connect(user = Sys.getenv("ORE_USERNAME", "rquser"),
sid = Sys.getenv("ORACLE_SID"),
host = Sys.getenv("HOST"),
password = Sys.getenv("ORE_PASSWORD", "rquser"),
port = if (.Platform$OS.type == "windows")
Sys.getenv("ORACLE_PORT")
else
Sys.getenv("TCPPORT"),
all = TRUE)
}
infertModel <-
glm(case ~ age + parity + education + spontaneous + induced,
data = infert, family = binomial())
INFERT <- ore.push(infert)
INFERTpred <- ore.predict(infertModel, INFERT, type = "response",
se.fit = TRUE)
INFERT <- cbind(INFERT, INFERTpred)
head(INFERT)
}
\keyword{models}
\keyword{regression}
OHA YOOOO