MINI MINI MANI MO

Path : /opt/oracle/product/18c/dbhomeXE/R/library/OREpredict/doc/man/ja/
File Upload :
Current File : //opt/oracle/product/18c/dbhomeXE/R/library/OREpredict/doc/man/ja/ore.predict-glm.Rd

%
% Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved. 
%
\name{ore.predict-glm}
\alias{ore.predict-glm}
\alias{ore.predict,glm-method}
\title{
\code{\link[stats]{glm}}モデルを使用したOracle R Enterpriseの予測
}
\description{
\code{\link[stats]{glm}}モデルを使用して予測を生成する
  Oracle R Enterpriseのメソッド。
}
\usage{
  \S4method{ore.predict}{glm}(object, newdata, type = c("link", "response"),
            se.fit = FALSE, dispersion = NULL, na.action = na.pass,
            ...)
}
\arguments{
  \item{object}{
\code{\link[stats]{glm}}モデル・オブジェクト。
}
  \item{newdata}{
\code{\link[OREbase:ore.frame-class]{ore.frame}}オブジェクト。
}
  \item{type}{
実行する予測のタイプを指定する文字列。
    \code{"link"} (リンク関数のスケール)または
    \code{"response"} (レスポンス変数のスケール)。
}
  \item{se.fit}{
予測の標準誤差を返すか
    どうかを指定する論理値。
}
  \item{dispersion}{
予測の標準誤差を計算するときに
    使用する散布パラメータ。
}
  \item{na.action}{
\code{NA}値が処理される方式で、\code{na.omit}または\code{na.pass}のいずれか。
}
  \item{\dots}{
オプションの引数。
}
}

\value{
引数\code{se.fit}が\code{FALSE}の場合、指定されたタイプの
  予測を含む\code{\link[OREbase:ore.numeric-class]{ore.numeric}}オブジェクトを
  返します。
  引数\code{se.fit}が\code{TRUE}の場合、2つの列
  \code{\link[OREbase:ore.frame-class]{ore.frame}}と\code{"PRED"}を含む\code{"SE.PRED"}オブジェクトを
  返します。
}
\references{
  \href{http://www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/documentation/index.html}{Oracle R Enterprise}
}
\note{
  Use of date/time terms in this method will result in an error.  
}
\author{
  Oracle \email{oracle-r-enterprise@oracle.com}
}
\seealso{
  \code{\link{ore.predict}},
  \code{\link{ore.predict-lm}},
  \code{\link[stats]{predict.glm}}.
}
\examples{
\dontshow{
if (!interactive())
    ore.connect(user     = Sys.getenv("ORE_USERNAME", "rquser"),
                sid      = Sys.getenv("ORACLE_SID"),
                host     = Sys.getenv("HOST"),
                password = Sys.getenv("ORE_PASSWORD", "rquser"),
                port  = if (.Platform$OS.type == "windows")
                           Sys.getenv("ORACLE_PORT")
                        else
                           Sys.getenv("TCPPORT"),
                all = TRUE)
}

infertModel <-
  glm(case ~ age + parity + education + spontaneous + induced,
      data = infert, family = binomial())
INFERT <- ore.push(infert)
INFERTpred <- ore.predict(infertModel, INFERT, type = "response",
                          se.fit = TRUE)
INFERT <- cbind(INFERT, INFERTpred)
head(INFERT)
}
\keyword{models}
\keyword{regression}

OHA YOOOO